Research & Development

Cured-in-place-Pipe (CIPP)

Sebastian Grimm M.Sc. Project-Manager

4th of June 2020, Frankfurt am Main

"Possibilities and restrictions of district heating pipe renovations – with Cured-in-place pipe (CIPP) systems" – FW-Liner

Number: 03ET1457A

Timeframe: 01.06.2017 – 28.02.2021

Supported by:

Project partner:

Motivation

- » Many district heating networks in Germany getting close to the end of the expected lifetime (built in 50th & 60th)
- » The oldest network parts are the hart of the system and buried in the area of the city centre
- » Increasing number of renovations at the German district heating networks expected
- » Short-term fixing options are limited
- » Replacement of pipe systems is cost and time intensive (especially unplanned)

Composition example

DH CIPP – renovations

General information of the CIPP technology: Step 1

- » Identify the imperfect part of the pipe
- Create access to the effected area
- » Pull in the flexible tube of fiberglass plastic

DH CIPP – renovations

General information of the CIPP technology: Step 2

- » Pressurise the flexible tube
- » Harden the system with ultra violet light

General information of the CIPP technology: Step 2

DH CIPP – renovations

General information of the CIPP technology: Step 3

- » Leak test
- The restored pipe will be reconnected to the grid
- » And enter into service

Expected benefits

- Well known, reliable technology for buried pipe systems (e.g. gas pipelines, fresh and sewage water)
- Timesaving alternative in case of short term issues
- » Low impact on the effected are (e. g. streets, buildings)
- » Cost efficient
- » Eco friendly

Challenges and limitations for the DH use

Just some cases of damage can be fixed (leakage)

Challenges, requirements and limitations for the DH use

- Just some cases of damage can be fixed (leakage)
- » Many expansion bends of DH grids (L- and U-expansions)
- » High level of temperature (up to 130°C-150°C) and pressure (up to 16 bar)
- » Many connections with high variation of nominal diameters
- » Limited minimum of diameter (size of the UV-Light)
- » Reduction of dimeter (T-pieces)
- Tube will influence the pressure drop and flow rate

Influence on the effort of development

- » Short- or long-term solutions
- » Temperature level
- » Diameter of DH-pipes
- » Length on straight uninterrupted pipes
- » Number of relevant error situations
- » Potential market and business cases

Sebastian Grimm M.Sc.

Department Research & Development

AGFW Projekt GmbH

the project company of the German DH association

s.grimm@agfw.de

+49 69/6304-200

www.agfw.de

my best choice district heating ...

district heating on smart heat for my home.

because it's clean and helps, to save CO₂ for a better environment.

Thank you for your kind attention!

https://www.agfw.de/fw-liner/

